Linear non-Gaussian causal discovery from a composite set of major US macroeconomic factors

نویسندگان

  • Zhe Gao
  • Zitian Wang
  • Lili Wang
  • Shaohua Tan
چکیده

In this paper, we develop an effective approach to model linear non-Gaussian causal relationships among a composite set of major US macroeconomic factors. The proposed approach first models the linear relationships of the factors using the Vector Autoregression (VAR) model, then the casual relationships are discovered using the linear non-Gaussian Structural Equation Modeling (SEM) method. One advantage of our hybrid approach is that the contemporaneous causal order of macroeconomic variables which is important for VAR practitioners is obtained naturally as a result of the computation. Applying our approach to 11 major US macroeconomic factors reveals that the federal funds rate has the dominating power in the set. This outcome purely based on the underlying data without any prior knowledge is in line with previous studies using other empirical approaches where prior knowledge is often essential. We also provide a global picture depicting the interaction among all the macroeconomic factors of concern, which are often approached individually or in small grouping in the economic research literature in the past and not studied in a unified view as in our approach. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UNDERSTANDING BEHAVIOR OF ANTINEOPLASTIC MOLECULES BASED ON MLR MODELS

New statistic based models provide a wide area of prediction equipments for different science areas. Among these fields biology have just entered the contest of interdisciplinary sciences. Drug discovery is a long and expensive process which could be decreased with theoretical approaches. In this study, 500 reported assayed anti cancer molecules were extracted from Science Direct articles, sket...

متن کامل

Estimation of linear non-Gaussian acyclic models for latent factors

Many methods have been proposed for discovery of causal relations among observed variables. But one often wants to discover causal relations among latent factors rather than observed variables. Some methods have been proposed to estimate linear acyclic models for latent factors that are measured by observed variables. However, most of the methods use data covariance structure alone for model id...

متن کامل

Discovering Cyclic and Acyclic Causal Models by Independent Components Analysis

We generalize Shimizu et al’s (2006) ICA-based approach for discovering linear non-Gaussian acyclic (LiNGAM) Structural Equation Models (SEMs) from causally sufficient, continuous-valued observational data. By relaxing the assumption that the generating SEM’s graph is acyclic, we solve the more general problem of linear non-Gaussian (LiNG) SEM discovery. In the large sample limit, LiNG discover...

متن کامل

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise

The discovery of non-linear causal relationship under additive non-Gaussian noise models has attracted considerable attention recently because of their high flexibility. In this paper, we propose a novel causal inference algorithm called least-squares independence regression (LSIR). LSIR learns the additive noise model through minimization of an estimator of the squaredloss mutual information b...

متن کامل

Macroeconomic Determinants of Manufacturing Sector Performance in Nigeria: an Asymmetric Non-Linear Approach

This study investigates the responsiveness of manufacturing sector performance to major macroeconomic determinants in Nigeria, covering the period between 1981 and 2018. It contributes to attendant literature by examining the asymmetric impact of each of the macroeconomic variables, including GDP per capita, exchange rate, inflation rate, interest rate proxied by prime lending rate, and gross f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012